ANALISIS SENTIMEN KEPUASAN PEMANGKU KEPENTINGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBOUR

  • Ni Luh Ratniasih Institut Teknologi dan Bisnis STIKOM Bali
  • Larasati Nabila Putri ITB STIKOM Bali

Abstract

Stakeholders are individuals or groups who have interests and can exert influence on an object. It is very important to measure the satisfaction of stakeholders (stakeholders) to get feedback and input for the purposes of developing and implementing strategies to increase stakeholder satisfaction, so it is necessary to know the opinions of stakeholders. The research method consists of several stages including the first stage is problem identification and literature study, the second stage is collecting data on stakeholder satisfaction (Students), the third stage is data preprocessing, the fourth stage is feature extraction in order to facilitate classification using the Naïve Bayes Classifier (NBC) method and K-Nearest Neighbor (KNN). The fourth stage is the testing and evaluation stage of the model. The fifth stage is testing the accuracy of the method. The purpose of this study is to compare the level of accuracy between the Naïve Bayes Classifier (NBC) and K-Nearest Neighbor (KNN) methods on sentiment analysis from comments on the results of measuring stakeholder satisfaction. The results of the accuracy rate using the Naïve Bayes Classifier (NBC) method of 91.13% and K-Nearest Neighbor (KNN) of 83.06% so that the performance of the Naïve Bayes Classifier (NBC) method is higher in the analysis of stakeholder satisfaction sentiment.

Downloads

Download data is not yet available.

References

[1] Hidayah, N., Hutagalung, S. S., & Hermawan, D. 2019. Analisis peran stakeholder dalam pengembangan wisata talang air peninggalan kolonial Belanda di Kelurahan Pajaresuk Kabupaten Pringsewu. Jurnal Ilmu Administrasi Publik. Vol. 7. No. 1. Hal. 55–71. doi:10.31289/publika.v7i1.2179.

[2] Bryson, J. M. 2004. What to do when stakeholders matter: stakeholder identification and analysis techniques. Public Management Review, Vol. 6. No. 1. Hal. 21–53. doi:10.1080/14719030410001675722.

[3] Sari, R. (2020). Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma KNearest Neighbor (K-Nn). EVOLUSI : Jurnal Sains Dan Manajemen, 8(1), 10–17. https://doi.org/10.31294/ evolusi.v8i1.7371.

[4] Buntoro, Ghulam Asrofi. 2017. Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. Integer Journal. Vol. 2. No. 1. Hal. 32-41.

[5] Samsir, A., Verawardina, U., Edi, F., Watrianthos, R. 2021. Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes. Jurnal Media Informatika Budidarma. Vol. 5, No. 1. Page 157-163.

[6] Juanita, S. 2020. Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes. J. MEDIA Inform. BUDIDARMA, vol. 4, no. 3, p. 552.

[7] Rasenda, R., H. Lubis, and R. Ridwan 2020. “Implementasi K-NN Dalam Analisa Sentimen Riba Pada Bunga Bank Berdasarkan Data Twitter,” J. MEDIA Inform. BUDIDARMA, doi: 10.30865/mib.v4i2.2051.

[8] Gunawan, Billy, Helen Sasty Pratiwi, Enda Esyudha Pratama. 2018. Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi dan Penelitian Informatika. Vol. 4. No. 2. Hal. 113-118.

[9] Akbari, M. I. H. A. D., Astri Novianty S.T., M. & Casi Setianingsih S.T., M., 2012. Analisis Sentimen Menggunakan Metode Learning Vector Quantization. Telkom University.

[10] Han, J., Kamber, M. & Pei, J. 2012. Data Mining Concepts and Techniques. 3rd ed. Waltham: Morgan Kaufmann Publishers.

[11] Kalpit G. Soni and Dr. Atul Patel. 2017. Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data. International Journal of Computational Intelligence Research ISSN 0973-1873 Vol. 13, No. 5, pp. 899-906
Published
2023-10-09
How to Cite
[1]
N. L. Ratniasih and L. Putri, “ANALISIS SENTIMEN KEPUASAN PEMANGKU KEPENTINGAN MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER DAN K-NEAREST NEIGHBOUR”, Jurnal Informasi dan Komputer, vol. 11, no. 02, pp. 103-109, Oct. 2023.