PREDIKSI HARGA EMAS MENGGUNAKAN ALGORITMA SEASONAL AUTO REGRESSIVE INTEGRATED MOVING AVERAGE
Abstract
This study aims to develop a gold price prediction model using the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. The model is designed to address fluctuations in gold prices influenced by seasonal factors by utilizing historical gold price data as the basis for forecasting. The data used has undergone selection and transformation stages within the Knowledge Discovery in Databases (KDD) framework. The model Evaluation was conducted using two main metrics, namely Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE), to measure prediction accuracy and performance. The results indicate that the SARIMA model is capable of providing high-accuracy predictions, as evidenced by an RMSE of 17.393 and a MAPE of 0.65863, reflecting a relatively low prediction error. These findings affirm the reliability of SARIMA in handling time series data with seasonal patterns while contributing to the development of commodity price prediction methods, particularly for gold. The developed model is expected to serve as a reference for investors, market analysts, and other stakeholders in formulating more measured and data-driven investment strategies.
Downloads
References
[2] Wahyuningtyas AR, Pratiwi WP, Wasono R, Utami TW. PERAMALAN INDEKS HARGA KONSUMEN KABUPATEN BANYUMAS DENGAN METODE SARIMA. J Litbang … [Internet]. 2021;3(1):135–40. Available from: http://cbt2olympicad6.unimus.ac.id/index.php/jle/article/download/55/57
[3] Setiawan RNS, Kusuma W. Peramalan Jumlah Produksi Padi Di Nusa Tenggara Barat Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (Sarima). J Agrimansion. 2024;25(1):106–14.
[4] Zaelani MYF. Implementasi Model SARIMA dan Algoritma Genetika pada Prediksi Produksi Minyak Bumi. Progresif J Ilm Komput. 2020;16(2):01.
[5] Prasetya BD, Pamungkas FS, Kharisudin I. Pemodelan dan Peramalan Data Saham dengan Analisis Time Series menggunakan Python. Prism Pros Semin Nas Mat [Internet]. 2020;3:714–8. Available from: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/38116
[6] Supriatna A, Subartini B, Hertini E, Riaman. Prediksi Wisatawan Mancanegara Ke Jawa Barat Melalui Pintu Masuk Bandara Husein Sastranegara dan Pelabuhan Muarajati Menggunakan Metode SARIMA. 8thIndustrial Res Work Natl Semin [Internet]. 2017;560–5. Available from: https://doi.org/10.35313/irwns.v8i3.594
[7] Christie G, Hatidja D, Tumilaar R. Penerapan Metode SARIMA dalam Model Intervensi Fungsi Step untuk Memprediksi Jumlah Pegunjung Objek Wisata Londa (Application of the SARIMA Method in the Step Function Intervention to Predict the Number of Visitors at Londa Tourism Object). J Ilm Sains. 2022;22(2):96.
[8] Hakim IL, Sanglise M, Suhendra CD. Analisis Peramalan Harga Telur Ayam Ras Dengan Menggunakan Metode SARIMA. J Media Inform Budidarma. 2024;8(2):966.
[9] Fajari DA, Abyantara MF, Lingga HA. Peramalan Rata-Rata Harga Beras Pada Tingkat Perdagangan Besar Atau Grosir Indonesia Dengan Metode Sarima (Seasonal Arima). J Agribisnis Terpadu. 2021;14(1):88.
[10] Lukmaini S, Nugraheni K, Istiqomah N. Peramalan Inflasi Provinsi Kalimantan Timur Tahun 2016-2022 Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Pros Semin Nas Mat Stat dan Apl. 2023;III:80–9.
[11] Utomo P, Fanani A. Peramalan Jumlah Penumpang Kereta Api di Indonesia Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA). J Mhs Mat Algebr [Internet]. 2020;1(1):169–78. Available from: http://jurnalsaintek.uinsby.ac.id/mhs/index.php/algebra/article/view/6/6
[12] Febiola A, Dewi A, Fazarin FM, Ramadhani F, Khaffi MA, Akbar R, et al. Perbandingan Metode ARIMA dan SARIMA Dalam Peramalan Jumlah Penumpang Bandara Provinsi Kepulauan Bangka Belitung. Jambura J Math. 2024;6(2):160–8.
[13] Suraya S, Sholeh M, Andayati D. Penerapan Metode Clustering Dengan Algoritma K-Means Pada Pengelompokan Indeks Prestasi Akademik Mahasiswa. Skanika. 2023;6(1):51–60.
[14] Nuraissa AFR, Mahdiyah U, Sanjaya A. Studi Perbandingan Metode ARIMA dan SARIMA dalam Memprediksi Harga Kripto Binance Coin. Agustus. 2023;7:2549–7952.
[15] Putri S, Sofro A. Peramalan Jumlah Keberangkatan Penumpang Pelayaran Dalam Negeri di Pelabuhan Tanjung Perak Menggunakan Metode ARIMA dan SARIMA. MATHunesa J Ilm Mat. 2022;10(1):61–7.