PENERAPAN DATA MINING UNTUK PERAMALAN TARGET PRODUKSI MINUMAN JUS KEMASAN MENGGUNAKAN METODE LINEAR REGRESI BERGANDA
Abstract
This study aims to apply one of the data mining techniques by applying the linear regression method in the beverage production planning process. Data mining is a data analysis technique used to identify patterns, relationships, and valuable information from large data sets. The linear regression method is one of the statistical methods used to model the relationship between the independent variables and the dependent variable. In this study, the data collected includes variables related to beverage production, such as sales results, the number of orders and the amount of production. The linear regression method will be used to build a mathematical model that can predict the amount of beverage production based on the existing variables. The results of this study are expected to provide valuable insights into the beverage production planning process. Using the linear regression method can assist companies in forecasting future beverage production based on patterns and trends found from data analysis. This can help companies manage raw material inventories, optimize resource use, and reduce production costs. The results of this study can be used as a basis for making better and more efficient decisions in managing beverage production, as well as providing significant economic benefits for the company.
Downloads
References
[2] Ardiansah, I., Adiarsa, I. F., Putri, S. H., & Pujianto, T. (2021). Penerapan Analisis Runtun Waktu pada Peramalan Penjualan Produk Organik menggunakan Metode Moving Average dan Exponential Smoothing. Jurnal Teknik Pertanian Lampung, 10(4), 548-559.
[3] Aristoteles, A., Heningtyas, Y., & Kristiani, M. (2020). Canny Edge Detection for Goldfish (Carrasius auratus) Identification.
[4] FEBRIANTI, M. A. (2022). Analisis Pola Pembelian Pelanggan Berdasarkan Transakspenjualan Pada Ritel Dengan Metode Multilevel Association Rules.
[5] Kemendag. (2022) NL June 2022. Kemendag. [Online] https://bkperdag.kemendag.go.id
[6] Mulyati, S., Fadilah, N., & Saleh, K. (2019). Peramalan permintaan Toza Juice Strawberry sebagai dasar penentuan kebutuhan persediaan bahan baku. Jurnal Agribisnis Terpadu, 12(2), 217-237.
[8] Nurhasanah, N., Siwi, M. S., Supriyanto, S., & Aspita, L. (2019). Analisis Kadar Protein, Lemak, Dan Total Asam Laktat Dari Fermentasi Kefir Berbahan Baku Kolostrum Sapi.
[9] Ramadina, S. G. (2023). PERENCANAAN KAPASITAS PRODUKSI PRODUK MINUMAN KEMASAN PADA PT. XYZ (Doctoral dissertation, Universitas Muhammadiyah Malang).
Rukmana, C. T. P., & Burhany, D. I. (2021). Perhitungan Peramalan Penjualan dalam Penyusunan Anggaran Penjualan pada PT Industri Susu Alam Murni (ISAM). Indonesian Accounting Literacy Journal, 1(3), 705-716.
[9] Sembiring, A. W., & Prasetyawan, Y. (2016). Perancangan Miniplant Pengolahan Komoditas Nanas dan Jagung di Kecamatan Ngancar (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
[10] Sembiring, F., Winata, H., & Kustini, R. (2018). Implementasi Data Mining Untuk Mengestimasi Perbandingkan Keuntungan Antara Tanaman Jeruk dan Kopi di Desa Kutambelin Menggunakan Algoritma Regresi Linear Berganda. Jurnal Cyber Tech, 1(4).
[11] Sembiring, F., Winata, H., & Kustini, R. (2018). Implementasi Data Mining Untuk Mengestimasi Perbandingkan Keuntungan Antara Tanaman Jeruk dan Kopi di Desa Kutambelin Menggunakan Algoritma Regresi Linear Berganda. Jurnal Cyber Tech, 1(4).
[12] Septifani, R. (2016). Raw Material Requirement Planning of Apple Cider Using Artificial Neural Network. Jurnal Teknologi Pertanian, 17(1), 59-68.
[13] Sianturi, F. A., Hasugian, P. M., Simangunsong, A., & Nadeak, B. (2019). DATA MINING: Teori dan Aplikasi Weka (Vol. 1). IOCS Publisher.