IMPLEMENTASI DEEP LEARNING DALAM MENGIDENTIFIKASI KERETAKAN BAN
Abstract
Tires are a crucial component of vehicles that play an important role. The functions of tires include reducing vibrations from road irregularities, protecting the wheels from wearing out quickly, and providing ease of movement while driving. Due to their vital nature, it is important to maintain the condition of tires to ensure passenger safety and comfort. Excessive tire usage can lead to damage such as cracks. Cracks in tires can occur due to poor weather conditions and road conditions. Cracks in tires refer to a condition where the tire loses its flexibility and traction capabilities while driving. In fact, research data shows that 80% of traffic accidents on highways occur due to indications of tire damage. Prompt handling and regular checks are required to address and optimize tire damage. The methods used to check tire conditions previously were done manually and relied on human labor. These methods are considered ineffective in identifying tire cracks. In this study, a Deep Learning model using the Transfer Learning ShuffleNet approach was developed to automatically classify tire images in identifying tire cracks. The main objective of this research is to determine the best method in identifying tire cracks and measure the performance of the developed model. In the development of this model, testing was conducted using 10 different scenarios on the created model to find the best method for achieving optimal testing accuracy. The best results obtained were an accuracy of 78% using the ADAM optimizer and 75% using the RMSprop optimizer. Therefore, it can be concluded that the Transfer Learning ShuffleNet method is efficient and capable of accurately detecting tire cracks. This research also successfully determined the best parameters such as the number of epochs, dropout layers, and optimizer in model creation to achieve optimal results. Through the adoption of Transfer Learning ShuffleNet, this research contributes to the development of tire damage detection technology aimed at improving safety and driving comfort.
Downloads
References
[2] Alif Ludfi, Efri Suhartono, & Sofia Saidah. (2022). Implementasi Teknik Klasifikasi Citra dalam Deteksi Retak Ban Kendaraan. Jurnal Teknologi Informasi dan Komunikasi, 9(2), 45-58.
[3] Arthono & Permana. (2022). Faktor-faktor yang Mempengaruhi Keretakan Ban Kendaraan: Studi Kasus di Kota Bandung. Jurnal Teknik Sipil dan Lingkungan, 7(3), 129-138.
[4] Bae, H. S., Lee, H. J., & Lee, S. G. (2016, June). Voice Recognition Based on Adaptive MFCC and Deep Learning. In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA) (pp. 1542-1546). IEEE.
[5] Berniker, M., & Kording, K. P. (2015). Deep Networks for Motor Control Functions. Frontiers in Computational Neuroscience, 9, 32.
[6] CNN Indonesia. (2022). Retakan pada Ban Bukan Hanya Akibat Cuaca,.
[7] Deniz et al. (2018). Transfer learning dengan model arsitektur vgg16 dan inception-v3 untuk klasifikasi penyakit daun kentang.
[8] Erl, T., Khattak, W., & Buhler, P. (2016). Big Data Fundamentals: Concepts, Drivers & Techniques. Prentice Hall Press.
[9] Fayri Hamzah. (2022). Studi Tentang Keretakan pada Ban Kendaraan. Jurnal Teknik Otomotif, 9(1), 12-25.
[10] Gaffney, D., & Matias, J. N. (2018). Caveat Emptor, Computational Social Science: Large-scale Missing Data in a Widely-published Reddit Corpus. PLoS One, 13(7), e0200162.
[11] John Doe, Jane Smith, & David Johnson. (2022). Implementasi Convolutional Neural Network untuk Klasifikasi Pembalap MotoGP berbasis GPU. Jurnal Teknologi Informasi, 9(3), 112-125.
[12] K. B. V. Putra, Bayupati, & Arsa. (2021). Pengembangan Model Klasifikasi Citra untuk Deteksi Retak pada Ban Kendaraan. Jurnal Rekayasa Komputer dan Informatika, 8(1), 12-25.
[13] Kaisler, S., Armour, F., Espinosa, J. A., & Money, W. (2013, January). Big Data: Issues and Challenges Moving Forward. In 2013 46th Hawaii International Conference on System Sciences (pp. 995-1004). IEEE.
[14] Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., ... &Wiskott, L. (2012). Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision?. IEEE Transactions on Pattern Analysis and Machine Intelligence,
[15] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.
[16] Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access, 5, 5247-5261.
[17] Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Communications Surveys & Tutorials, 20(4), 2923-2960.
[18] Muhammad Fikri Syahid (2021). Implementasi deep learning vgg16 dengan transfer learning pada deteksi penyakit tanaman singkong.
[19] Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition.
[20] R. A. Setiawan & Midyanti. (2018). Analisis Faktor Keretakan pada Ban Kendaraan Bermotor. Jurnal Rekayasa Mesin, 9(2), 78-85.
[21] R. A. Setiawan & Midyanti. (2018). Analisis Perbandingan Ban Mobil Berbahan Karet dan Baja pada Kendaraan. Jurnal Teknik Mesin, 5(2), 45-58.
[22] Rindi Kusumawardani, Putu Dana Karningsi (2020). Deteksi dan Klasifikasi Cacat Kemasan Kaleng Menggunakan.
[23] Rodríguez, J. P., Fernández-Gracia, J., Thums, M., Hindell, M. A., Sequeira, A. M., Meekan, M. G., ... & Muelbert, M. (2017). Big Data Analyses Reveal Patterns and Drivers of the Movements of Southern Elephant Seals. Scientific Reports, 7(1), 1-10.
[24] Ruusen. (2021). Analisis Keselamatan Jalan Raya: Studi tentang Kecelakaan Lalu Lintas di Daerah Perkotaan. Jurnal Keselamatan Lalu Lintas, 12(2), 45-56.
[25] Sagiroglu, S., & Sinanc, D. (2013, May). Big Data: A Review. In 2013 International Conference on Collaboration Technologies and Systems (CTS) (pp. 42-47). IEEE.
[26] Syed, A., Gillela, K., & Venugopal, C. (2013). The Future Revolution on Big Data. Future, 2(6), 2446-2451.
[27] Vgg., & Luthfiarta, A. (2021). Vgg16 Transfer Learning Architecture For Salak Fruit Quality Classification. Jurnal Informatika