PREDIKISI PENJUALAN DETERGENT TERLARIS MENGGUNAKAN METODE K-NEAREST NEIGHBOR(K-NN)
Abstract
Housing is one of the basic human needs and is an important factor in increasing human dignity. This is a very dominant problem in human survival to carry out all its activities. Prospective buyers are not easy in choosing housing, because hasty decision making will not provide the satisfaction expected by prospective buyers. In determining residential housing requires consideration to get a residence that fits expectations, because everyone has different abilities. This study aims to create a decision support system for selecting the best housing in accordance with the wishes and needs using the WASPAS method with housing selection criteria including developer, price, land area, building area, distance to the city center. The results of the recommendations from the selection of Bukit Semarang Jaya Metro developer criteria with the WASPAS method are Bukit Kencana Jaya housing with a Qi value = 0.872. Bukit Kencana Jaya has the highest value because it has a low price where the price criteria have the highest percentage weight. The combination of price advantage and weight advantage gives Bukit Kencana Jaya a high value
Downloads
References
[2] C. R. Sari, “Peqguruang: Conference Series,” vol. 2, no. April, 2020.
[3] D. M. K. N. K-nn, B. Prihambodo, A. W. F. Y, E. Prayoga, and A. Jaffar, “MITOR : Jurnal Teknik Elektro,” pp. 31–36, 2023.
[4] B. Yulia, L. Fahik, B. S. Djahi, N. D. Rumlaklak, J. I. Komputer, and U. N. Cendana, “DATA MINING UNTUK KLASIFIKASI STATUS GIZI DESA DI KABUPATEN,” vol. 6, no. 1, pp. 1–7, 2018.
[5] D. Virdaus and P. T. Prasetyaningrum, “Penerapan Data Mining Untuk Memprediksi Harga Bawang Merah Di Yogyakarta Menggunakan Metode K-Nearest Neighbor Implementation Of Data Mining To Predict The Price Of Shallots In Yogyakarta Using The K-Nearest Neighbor Method,” no. 84, pp. 1–8.
[6] J. Yos, S. No, K. Lubuklinggau, and S. Selatan, “Perbandingan Tingkat Akurasi Metode KNN Dan Decision Tree Dalam Memprediksi Lama Studi Mahasiswa,” vol. 03, no. 97, pp. 6–14, 2021.
[7] I. Yolanda and H. Fahmi, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT . Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor,” vol. 3, no. 3, pp. 9–15, 2021.
[8] R. Fadilla, K. Dewi, and R. Gusmana, “Implementasi Metode K-Nearest Neighbor ( KNN ) dalam Pengelompokan Status Ekonomi Warga,” vol. 4, no. 1, 2018.
[9] J. Coding and S. K. Untan, “Kata Kunci: Kebakaran Hutan, Data Mining, K-Nearest Neighbor (KNN), Fire Weather Index(FWI). 1.,” vol. 06, no. 2, 2018.
[10] M. K. Neighbor, “Prediksi penjualan produk unilever menggunakan metode k-nearest neighbor,” vol. 06, pp. 155–160, 2021.
[11] E. Hasmin, S. Aisa, and T. Informatika, “Penerapan Algoritma C4 . 5 Untuk Penentuan Penerima Beasiswa Mahasiswa,” vol. 5, no. 2, pp. 308–320, 2019.
[12] G. A. Prasetyo, R. G. Santosa, and A. R. Chrismanto, “Memprediksi Kategori Indeks Prestasi Mahasiswa,” no. 5, 2017, doi: 10.21460/jutei.2019.32.185.
[13] S. Haryati, A. Sudarsono, and E. Suryana, “Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu),” J. Media Infotama, vol. 11, no. 2, pp. 130–138, 2015.
[14] J. Media and I. Budidarma, “Data Mining Menggunakan Algoritma K-Nearest Neighbor Dalam Menentukan Kredit Macet Barang Elektronik,” vol. 5, pp. 1063–1067, 2021, doi: 10.30865/mib.v5i3.3100.
[15] A. Ernawati, “Analisis Implementasi Program Penanggulangan Gizi Buruk Pada Anak Balita Di Puskesmas Jakenan Kabupaten Pati,” J. Litbang Media Inf. Penelitian, Pengemb. dan IPTEK, vol. 15, no. 1, pp. 39–50, 2019, doi: 10.33658/jl.v15i1.131.