• Mumtaz Muttakin STMIK Bani Saleh, Bekasi
  • Sabar Hana DwiPutra STMIK Bani Saleh


Forecasting or prediction in production activities is an activity that aims to predict everything related to production, supply, demand, and use of technology in an industry. In the end, this prediction is often used by companies and operational management to make plans related to their business activities in certain periods. As a tool for measuring the level of predictions that are close to good accuracy which can be used as a reference for calculating a business process in the future, companies also need an accurate and tested measuring tool based on the type of estimate itself. The NEURAL NETWORK  method with backpropagation calculates a pattern based on the history of several periods that have occurred. This method is often used to obtain prediction accuracy in forecasting activities. Inaccurate packaging stock inventory forecasting to support production needs causes the inventory space to exceed capacity and the production process is disrupted, so the selection of an appropriate forecasting method is needed. The use of the NEURAL NETWORK  method with backpropagation to increase the accuracy of the prediction of the procurement of packaged goods in this study is very suitable. Results of Data Training with input data for begin stock, consumption, incoming, and safety stock and target data is the stock order yields the best MSE value of 0.03603642 on the number of neurons 11 with an epoch value of 1000 and a maximum error limit of 6, so that the test data resulted in the accuracy of the MAPE value of 0.52%.


Download data is not yet available.


[1] Bazimenyera, J. d., Qiang, F., tianxiao, L., Niragire, T., & Ntakirutimana, T. (2016). Forecasting cereals production based on regression and back-propagation (BP) network model in Eastern Province. African Journal of Agricultural, 7.
[2] Fábio Cosme Rodrigues dos Santos, A. F. (2017). Intelligent System for Improving Dosage Control. Acta Scientiarum. Technology, 7.
[3] Feri Wibowo, S. S. (2013). Tingkat Ketelitian Pengenalan Pola Data. JUITA, 6.
[4] Heizer, J., & Render, B. (2015). Manajemen Operasi. Jakarta Selatan: Penerbit Salemba Empat.
[5] Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining. Yogyakarta: Penerbit Andi.
[6] Laudon, K. C., & Ludon, J. P. (2008). Sistem Informasi Manajemen Mengelola Perusahaan Digital Edisi 10. Jakarta: Penerbit Salemba Empat.
[7] Nazir, M. (2011). Metode Penelitian Cetakan 6. Bogor: Penerbit Ghalia Indonesia.
[8] Razak, M. A., & Riksakomara, E. (2017). Peramalan Jumlah Produksi Ikan dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Banjarmasin. Jurnal Teknik ITS, 7.
[9] Riska Septifani, M. E. (2016). Perencanaan Kebutuhan Bahan Baku Minuman Sari Apel Dengan Metode Jaringan Syaraf Tiruan. Jurnal Teknologi Pertanian, 10.
[10] Sandy Putra Siregar, A. W. (2017). Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting). International Journal Of Information System & Technology, 9.
[11] Siang, J. J. (2005). Jaringan Syaraf Tiruan dan Pemrogramannya menggunakan MATLAB. Yogyakarta: ANDI.
[12] Sukmadinata, N. (2011). Metode Penelitian Pendidikan. Bandung: Remaja Rosadakarya .
[13] Suparmoko, M., & Yusuf, F. A. (2015). Ekonomika untuk Manajer (Ekonomika Manajerial). Yogyakarta: BPFE-YOGYAKARTA.
[14] Teguh Iryanto, M. A. (2019). Pemodelan Jaringan Saraf Tiruan Untuk Prediksi Konsumsi Listrik Mesin Uji Pada Laboratorium Otomotif. Jurnal Teknologi Bahan dan Barang Teknik, 8.
[15] Yuslena Sari, R. A. (2017). Classification Quality of Tobacco Leaves as Cigarette Raw Material Based on Artificial Neural Netwo. International Journal of Computer Trends and Technology (IJCTT) , 4.
How to Cite
M. Muttakin and S. DwiPutra, “PENINGKATAN AKURASI PREDIKSI PENGADAAN BAHAN BAKU PRODUKSI DENGAN MENGGUNAKAN METODE NEURAL NETWORK”, Jurnal Informasi dan Komputer, vol. 10, no. 1, pp. 62-72, Apr. 2022.