Penerapan Algoritma K-means Untuk Pengelompokan Usia Pasien Penerima Vaksin di KAB. Ngawi
Abstract
The world pandemic that was established in 2019 was discovered in Wuhan, China and spread throughout the world, namely the Corona Virus Disease or Covid-19. Indonesia's Covid-19 cases are increasing drastically every day, until the implementation of the lockdown, PSBB and PPKM. This is Indonesia's effort to reduce the increase in COVID-19. After the development of the vaccine in Indonesia and it has been distributed throughout Indonesia, the government requires the public to get the vaccine. Likewise in the district. Ngawi. the public can register with the Health Office to get the vaccine schedule and location placement. By using the k-means algorithm method in placing vaccines, the Health Office can help group vaccine locations for the community based on existing data. In building a website grouping system by applying the k-means algorithm, the Waterfall model system development method is used. The website that will be built will display the results of the k-means calculation with the specified cluster and display the closest distance. From these calculations, the website can also display the grouping of vaccine locations which are divided into 3 clusters, namely the Ngawi Public Health Center, the Ngawi Ancient Health Center and the Padas Health Center. The application of the k-means algorithm method on the website is expected to assist the performance of the Health Office in determining the placement of vaccine locations for prospective vaccine patients who have registered.
Downloads
References
[2] I. P. Sari and S. Sriwidodo, “Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin COVID-19,” Maj. Farmasetika, vol. 5, no. 5, p. 204, 2020.
[3] K. Fatmawati and A. P. Windarto, “Data Mining: Penerapan Rapidminer Dengan K-Means Cluster Pada Daerah Terjangkit Demam Berdarah Dengue (Dbd) Berdasarkan Provinsi,” Comput. Eng. Sci. Syst. J., vol. 3, no. 2, p. 173, 2018.
[4] Noviyanto, “Penerapan Data Mining Dalam Mengelompokkan Jumlah Kematian,” Paradig. Inform. dan Komput., vol. 22, no. 2, 2020.
[5] F. A. Tanjung, A. P. Windarto, and M. Fauzan, “Penerapan Metode K-Means Pada Pengelompokkan Pengangguran Di Indonesia,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, pp. 61–74, 2021.
[6] M. Susilo, “Rancang Bangun Website Toko Online Menggunakan Metode Waterfall,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 2, no. 2, pp. 98–105, 2018.
[7] Rizaldi, “Penerapan Waterfall Dalam Membangun Sistem Informasi Pengolahan Data,” vol. IV, no. 1, pp. 71–80, 2017.
[8] Y. P. Santoso, M. Marlina, and H. Agung, “Implementasi Metode K-Means Clustering pada Sistem Rekomendasi Dosen Tetap Berdasarkan Penilaian Dosen,” J. Inform. Univ. Pamulang, vol. 3, no. 4, p. 228, 2018.
[9] R. Nursyanti, R. Y. R. Alamsyah, and S. Perdana, “Perancangan Aplikasi Berbasis Web Untuk Membantu Pengujian Kualitas Kain Tekstil Otomotif (Studi Kasus Pada Pt. Ateja Multi Industri),” Explor. J. Sist. Inf. dan Telemat., vol. 10, no. 2, 2019.
[10] T. B. Kurniawan, “Perancangan Sistem Aplikasi Pemesanan Makanan Dan Minuman Pada Cafetaria No Caffe Di Tanjung Balai Karimun Menggunakan Bahasa Pemograman,” J. TIKAR, vol. 1, no. 2, pp. 192–206, 2020.
[11] V. H. Pranatawijaya, W. Widiatry, R. Priskila, and P. B. A. A. Putra, “Penerapan Skala Likert dan Skala Dikotomi Pada Kuesioner Online,” J. Sains dan Inform., vol. 5, no. 2, pp. 128–137, 2019.
[12] Sumartini, K. S. Harahap, and Sthevany, “Kajian Pengendalian Mutu Produk Tuna Loin Precooked Frozen Di Perusahaan Pembekuan Tuna X Study of Quality Control of Tuna Loin Precooked Frozen Products Using the Likert Scale Method,” Ind. Pengolah. pangan dan Has. Perikan. secara simultan Meningkat. concern di Bid. keamanan pangan dan Pengendali. mutu. Pengendali. mutu yang paling dasar adalah GMP (Good Manuf. Pract. dan SSOP (Sanitation Stand. Oper. Proc, vol. 2, no. 1, pp. 29–38, 2020.